Part Number Hot Search : 
04C14 B3834 P4KE24A IPP80N04 74AUP2 P4KE24A AEP378SI KBPC351
Product Description
Full Text Search
 

To Download KSM9N50C Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  KSM9N50C/ksmf9n50c 500v n-channel mosfet general description these n-channel enhancement mode power field effect transistors are produced using kersemi proprietary, planar stripe, dmos technology. this advanced technology has been especially tailored to minimize on-state resistance, provide superior switching performance, and withstand high energy pulse in the avalanche and commutation mode. these devices are well suited for high efficiency switched mode power supplies, active power factor correction, electronic lamp ballasts based on half bridge topology. features  9 a, 500v, r ds(on) = 0.8 ? @v gs = 10 v  low gate charge ( typical 28 nc)  low crss ( typical 24 pf)  fast switching  100% avalanche tested  improved dv/dt capability absolute maximum ratings t c = 25c unless otherwise noted * drain current limited by maximum junction temperature thermal characteristics symbol parameter KSM9N50C ksmf9n50c units v dss drain-source voltage 500 v i d drain current - continuous (t c = 25c) 99 *a - continuous (t c = 100c) 5.4 5.4 * a i dm drain current - pulsed (note 1) 36 36 * a v gss gate-source voltage 30 v e as single pulsed avalanche energy (note 2) 360 mj i ar avalanche current (note 1) 9a e ar repetitive avalanche energy (note 1) 13.5 mj dv/dt peak diode recovery dv/dt (note 3) 4.5 v/ns p d power dissipation (t c = 25c) 135 44 w - derate above 25c 1.07 0.35 w/c t j , t stg operating and storage temperature range -55 to +150 c t l maximum lead temperature for soldering purposes, 1/8 " from case for 5 seconds 300 c symbol parameter KSM9N50C ksmf9n50c units r jc thermal resistance, junction-to-case 0.93 2.86 c / w r cs thermal resistance, case-to-sink typ. 0.5 -- c / w r ja thermal resistance, junction-to-ambient 62.5 62.5 c / w to-220 to-220f ! ! ! ! ! ! ! ! ! ! ! ! ? ? ? ? ! ! ! ! ! ! ! ! ! ! ! ! ? ? ? ? s d g 2014-6-18 www.kersemi.com 1
t c = 25c unless otherwise noted notes: 1. repetitive rating : pulse width limited by maximum junction temperature 2. l = 8 mh, i as = 9a, v dd = 50v, r g = 25 ?, starting t j = 25c 3. i sd 9a, di/dt 200a/ s, v dd bv dss, starting t j = 25c 4. pulse test : pulse width 300 s, duty cycle 2% 5. essentially independent of operating temperature symbol parameter test conditions min typ max units off characteristics bv dss drain-source breakdown voltage v gs = 0 v, i d = 250 a 500 -- -- v ? bv dss / ? t j breakdown voltage temperature coefficient i d = 250 a, referenced to 25c -- 0.57 -- v/c i dss zero gate voltage drain current v ds = 500 v, v gs = 0 v -- -- 1 a v ds = 400 v, t c = 125c -- -- 10 a i gssf gate-body leakage current, forward v gs = 30 v, v ds = 0 v -- -- 100 na i gssr gate-body leakage current, reverse v gs = -30 v, v ds = 0 v -- -- -100 na on characteristics v gs(th) gate threshold voltage v ds = v gs , i d = 250 a 2.0 -- 4.0 v r ds(on) static drain-source on-resistance v gs = 10 v, i d = 4.5 a -- 0.65 0.8 ? g fs forward transconductance v ds = 40 v, i d = 4.5 a (note 4) -- 6.5 -- s dynamic characteristics c iss input capacitance v ds = 25 v, v gs = 0 v, f = 1.0 mhz -- 790 1030 pf c oss output capacitance -- 130 170 pf c rss reverse transfer capacitance -- 24 30 pf switching characteristics t d(on) turn-on delay time v dd = 250 v, i d = 9 a, r g = 25 ? (note 4, 5) -- 18 45 ns t r turn-on rise time -- 65 140 ns t d(off) turn-off delay time -- 93 195 ns t f turn-off fall time -- 64 125 ns q g total gate charge v ds = 400 v, i d = 9 a, v gs = 10 v (note 4, 5) -- 28 35 nc q gs gate-source charge -- 4 -- nc q gd gate-drain charge -- 15 -- nc drain-source diode characteristics and maximum ratings i s maximum continuous drain-source diode forward current -- -- 9 a i sm maximum pulsed drain-source diode forward current -- -- 36 a v sd drain-source diode forward voltage v gs = 0 v, i s = 9 a -- -- 1.4 v t rr reverse recovery time v gs = 0 v, i s = 9 a, di f / dt = 100 a/ s (note 4) -- 335 -- ns q rr reverse recovery charge -- 2.95 -- c electrical characteristics KSM9N50C/ksmf9n50c 2014-6-18 www.kersemi.com 2
0 5 10 15 20 25 30 0 2 4 6 8 10 12 v ds = 250v v ds = 100v v ds = 400v note : i d = 9a v gs , gate-source voltage [v] q g , total gate charge [nc] 0.2 0.4 0.6 0.8 1.0 1.2 1.4 10 -1 10 0 10 1 150 notes : 1. v gs = 0v 2. 250 s pulse test 25 i dr , reverse drain current [a] v sd , source-drain voltage [v] 0 5 10 15 20 25 0.5 1.0 1.5 2.0 v gs = 20v v gs = 10v note : t j = 25 r ds(on) [ ], drain-source on-resistance i d , drain current [a] typical characteristics figure 5. capacitance characteristics figure 6. gate charge characteristics figure 3. on-resistance variation vs drain current and gate voltage figure 4. body diode forward voltage variation with source current and temperature figure 2. transfer characteristics figure 1. on-region characteristics 10 -1 10 0 10 1 10 -1 10 0 10 1 v gs top : 15.0 v 10.0 v 8.0 v 7.0 v 6.0 v 5.5 v 5.0 v bottom : 4.5 v notes : 1. 250 s pulse test 2. t c = 25 i d , drain current [a] v ds , drain-source voltage [v] 246810 10 -1 10 0 10 1 150 o c 25 o c -55 o c notes : 1. v ds = 40v 2. 250 s pulse test i d , drain current [a] v gs , gate-source voltage [v] 10 -1 10 0 10 1 0 400 800 1200 1600 2000 c iss = c gs + c gd (c ds = shorted) c oss = c ds + c gd c rss = c gd notes ; 1. v gs = 0 v 2. f = 1 mhz c rss c oss c iss capacitance [pf] v ds , drain-source voltage [v] KSM9N50C/ksmf9n50c 2014-6-18 www.kersemi.com 3
10 0 10 1 10 2 10 3 10 -2 10 -1 10 0 10 1 10 2 100 ms 10 s dc 10 ms 1 ms 100 s operation in this area is limited by r ds(on) notes : 1. t c = 25 o c 2. t j = 150 o c 3. single pulse i d , drain current [a] v ds , drain-source voltage [v] 10 0 10 1 10 2 10 3 10 -2 10 -1 10 0 10 1 10 2 100 ms 10 s dc 10 ms 1 ms 100 s operation in this area is limited by r ds(on) notes : 1. t c = 25 o c 2. t j = 150 o c 3. single pulse i d , drain current [a] v ds , drain-source voltage [v] typical characteristics (continued) figure 9-1. maximum safe operating area for fqp9n50c figure 10. maximum drain current vs case temperature figure 7. breakdown voltage variation vs temperature figure 8. on-resistance variation vs temperature figure 9-2. maximum safe operating area for fqpf9n50c -100 -50 0 50 100 150 200 0.8 0.9 1.0 1.1 1.2 notes : 1. v gs = 0 v 2. i d = 250 a bv dss , (normalized) drain-source breakdown voltage t j , junction temperature [ o c] -100 -50 0 50 100 150 200 0.0 0.5 1.0 1.5 2.0 2.5 3.0 notes : 1. v gs = 10 v 2. i d = 4.5 a r ds(on) , (normalized) drain-source on-resistance t j , junction temperature [ o c] 25 50 75 100 125 150 0 2 4 6 8 10 i d , drain current [a] t c , case temperature [ ] KSM9N50C/ksmf9n50c 2014-6-18 www.kersemi.com 4
10 -5 10 -4 10 -3 10 -2 10 -1 10 0 10 1 10 -2 10 -1 10 0 notes : 1. z jc (t) = 2.86 /w m a x. 2. d u ty f a c to r, d = t 1 /t 2 3. t jm - t c = p dm * z jc (t) single pulse d=0.5 0.02 0.2 0.05 0.1 0.01 z jc (t), therm al response t 1 , square w ave pulse duration [sec] 10 -5 10 -4 10 -3 10 -2 10 -1 10 0 10 1 10 -2 10 -1 10 0 notes : 1. z jc (t) = 0.93 /w m a x. 2. d u ty f a c to r, d = t 1 /t 2 3. t jm - t c = p dm * z jc (t) s in g le pu ls e d=0.5 0.02 0.2 0.05 0.1 0.01 z jc (t), therm al response t 1 , square w ave pulse duration [sec] typical characteristics (continued) figure 11-1. transient thermal response curve for fqp9n50c figure 11-2. transient thermal response curve for fqpf9n50c t 1 p dm t 2 t 1 p dm t 2 KSM9N50C/ksmf9n50c 2014-6-18 www.kersemi.com 5
gate charge test circuit & waveform resistive switching test circuit & waveforms unclamped inductive switching test circuit & waveforms charge v gs 10v q g q gs q gd 3ma v gs dut v ds 300nf 50k 200nf 12v same type as dut charge v gs 10v q g q gs q gd 3ma v gs dut v ds 300nf 50k 200nf 12v same type as dut v gs v ds 10% 90% t d(on) t r t on t off t d(off) t f v dd 10v v ds r l dut r g v gs v gs v ds 10% 90% t d(on) t r t on t off t d(off) t f v dd 10v v ds r l dut r g v gs e as =li as 2 ---- 2 1 -------------------- bv dss -v dd bv dss v dd v ds bv dss t p v dd i as v ds (t) i d (t) time 10v dut r g l i d t p e as =li as 2 ---- 2 1 e as =li as 2 ---- 2 1 ---- 2 1 -------------------- bv dss -v dd bv dss v dd v ds bv dss t p v dd i as v ds (t) i d (t) time 10v dut r g l l i d i d t p KSM9N50C/ksmf9n50c 2014-6-18 www.kersemi.com 6
peak diode recovery dv/dt test circuit & waveforms dut v ds + _ driver r g same type as dut v gs  dv/dt controlled by r g i sd controlled by pulse period v dd l i sd 10v v gs ( driver ) i sd ( dut ) v ds ( dut ) v dd body diode forward voltage drop v sd i fm , body diode forward current body diode reverse current i rm body diode recovery dv/dt di/dt d = gate pulse width gate pulse period -------------------------- dut v ds + _ driver r g same type as dut v gs  dv/dt controlled by r g i sd controlled by pulse period v dd l l i sd 10v v gs ( driver ) i sd ( dut ) v ds ( dut ) v dd body diode forward voltage drop v sd i fm , body diode forward current body diode reverse current i rm body diode recovery dv/dt di/dt d = gate pulse width gate pulse period -------------------------- d = gate pulse width gate pulse period -------------------------- KSM9N50C/ksmf9n50c 2014-6-18 www.kersemi.com 7
package dimensions 4.50 0.20 9.90 0.20 1.52 0.10 0.80 0.10 2.40 0.20 10.00 0.20 1.27 0.10 ?.60 0.10 (8.70) 2.80 0.10 15.90 0.20 10.08 0.30 18.95max. (1.70) (3.70) (3.00) (1.46) (1.00) (45 ) 9.20 0.20 13.08 0.20 1.30 0.10 1.30 +0.10 ?.05 0.50 +0.10 ?.05 2.54typ [2.54 0.20 ] 2.54typ [2.54 0.20 ] to-220 KSM9N50C/ksmf9n50c 2014-6-18 www.kersemi.com 8
package dimensions (continued) (7.00) (0.70) max1.47 (30 3.18 0.05 to-220f KSM9N50C/ksmf9n50c 2014-6-18 www.kersemi.com 9


▲Up To Search▲   

 
Price & Availability of KSM9N50C

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X